2,538 research outputs found

    Decay of a Yukawa fermion at finite temperature and applications to leptogenesis

    Full text link
    We calculate the decay rate of a Yukawa fermion in a thermal bath using finite temperature cutting rules and effective Green's functions according to the hard thermal loop resummation technique. We apply this result to the decay of a heavy Majorana neutrino in leptogenesis. Compared to the usual approach where thermal masses are inserted into the kinematics of final states, we find that deviations arise through two different leptonic dispersion relations. The decay rate differs from the usual approach by more than one order of magnitude in the temperature range which is interesting for the weak washout regime. We discuss how to arrive at consistent finite temperature treatments of leptogenesis.Comment: 16 pages, 5 figure

    Conserved Density Fluctuation and Temporal Correlation Function in HTL Perturbation Theory

    Full text link
    Considering recently developed Hard Thermal Loop perturbation theory that takes into account the effect of the variation of the external field through the fluctuations of a conserved quantity we calculate the temporal component of the Euclidian correlation function in the vector channel. The results are found to be in good agreement with the very recent results obtained within the quenched approximation of QCD and small values of the quark mass (∼0.1T\sim 0.1T) on improved lattices of size 1283×Nτ128^3\times N_\tau at (Nτ=40, T=1.2TCN_\tau=40, \ T=1.2T_C), (Nτ=48, T=1.45TCN_\tau=48, \ T=1.45T_C), and (Nτ=16, T=2.98TCN_\tau=16, \ T=2.98T_C), where NτN_\tau is the temporal extent of the lattice. This suggests that the results from lattice QCD and Hard Thermal Loop perturbation theory are in close proximity for a quantity associated with the conserved density fluctuation.Comment: 16 pages, 4 figures; One para added in introduction, Fig 1 modified; Accepted in Phys. Rev.

    The Quark-Gluon-Plasma Liquid

    Full text link
    The quark-gluon plasma close to the critical temperature is a strongly interacting system. Using strongly coupled, classical, non-relativistic plasmas as an analogy, we argue that the quark-gluon plasma is in the liquid phase. This allows to understand experimental observations in ultrarelativistic heavy-ion collisions and to interpret lattice QCD results. It also supports the indications of the presence of a strongly coupled QGP in ultrarelativistic heavy-ion collisions.Comment: 8 pages, 2 figures, final version, to bepublished in J. Phys.

    Covariant transport approach for strongly interacting partonic systems

    Full text link
    The dynamics of partons, hadrons and strings in relativistic nucleus-nucleus collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results - including the partonic equation of state - in thermodynamic equilibrium. Scalar- and vector-interaction densities are extracted from the DQPM as well as effective scalar- and vector-mean fields for the partons. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. Since the dynamical quarks and antiquarks become very massive close to the phase transition, the formed resonant 'pre-hadronic' color-dipole states (qqˉq\bar{q} or qqqqqq) are of high invariant mass, too, and sequentially decay to the groundstate meson and baryon octets increasing the total entropy. When applying the PHSD approach to Pb+Pb colllisions at 158 A⋅\cdotGeV we find a significant effect of the partonic phase on the production of multi-strange antibaryons due to a slightly enhanced ssˉs{\bar s} pair production from massive time-like gluon decay and a larger formation of antibaryons in the hadronization process.Comment: 12 pages, 6 figures, to be published in the Proceedings of the 26th Winter Workshop on `Nuclear Dynamics', Ochto Rios, Jamaica, 2-9 January, 2010

    Flavor ordering of elliptic flows at high transverse momentum

    Get PDF
    Based on the quark coalescence model for the parton-to-hadron phase transition in ultra-relativistic heavy ion collisions, we relate the elliptic flow (v2v_2) of high \pt hadrons to that of high \pt quarks. For high \pt hadrons produced from an isospin symmetric and quark-antiquark symmetric partonic matter, magnitudes of their elliptic flows follow a flavor ordering as (v2,π=v2,N)>(v2,Λ=v2,Σ)>v2,K>v2,Ξ>(v2,ϕ=v2,Ω)(v_{2,\pi}=v_{2,N}) > (v_{2,\Lambda}=v_{2,\Sigma}) > v_{2,K} > v_{2,\Xi} > (v_{2,\phi}=v_{2,\Omega}) if strange quarks have a smaller elliptic flow than light quarks. The elliptic flows of high \pt hadrons further follow a simple quark counting rule if strange quarks and light quarks have same high \pt spectrum and coalescence probability.Comment: 4 pages, 1 figure, revte

    Mentalising and social problem solving in adults with Asperger's syndrome

    Get PDF
    It is well established that autistic spectrum disorder is linked to difficulties with mentalising, but the ways in which this affects everyday behaviour is less well understood. This study explored the nature and extent of difficulties in everyday social functioning in adults with Asperger's syndrome (AS), since increased understanding can enhance the development of more effective intervention strategies. Methods Individuals with AS (n=21) were compared with healthy control participants (n=21) on three tests of social cognition: the Mentalistic Interpretation task, which assesses interpretation of sarcasm and actions; the Social Problem Fluency task, which assesses ability to generate problem solutions; and the Social Problem Resolution task, which assesses judgement in selecting problem solutions. Results Comprehension of both sarcastic remarks and actions was impaired in those with AS on the mentalistic interpretation task. Participants with AS showed difficulties in identifying the awkward elements of everyday social scenarios, and they were also impaired in generating problem solutions but not in judging alternative solutions on the social problem fluency and resolution tasks. Conclusions These tasks potentially provide a means of profiling strengths and weaknesses in social processing, which in turn has implications for informing clinical evaluation and training. © 2013 Taylor & Francis

    Field Theoretic Description of Ultrarelativistic Electron-Positron Plasmas

    Get PDF
    Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and play a role in various astrophysical situations. Their properties can be calculated using QED at finite temperature. Here we will use perturbative QED at finite temperature for calculating various important properties, such as the equation of state, dispersion relations of collective plasma modes of photons and electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients, and particle production rates, of ultrarelativistic electron-positron plasmas. In particular, we will focus on electron-positron plasmas produced with ultra-strong lasers.Comment: 13 pages, 7 figures, 1 table, published versio

    Bremsstrahlung from an Equilibrating Quark-Gluon Plasma

    Get PDF
    The photon production rate from a chemically equilibrating quark-gluon plasma likely to be produced at RHIC (BNL) and LHC (CERN) energies is estimated taking into account bremsstrahlung. The plasma is assumed to be in local thermal equilibrium, but with a phase space distribution that deviates from the Fermi or Bose distribution by space-time dependent factors (fugacities). The photon spectrum is obtained by integrating the photon rate over the space-time history of the plasma, adopting a boost invariant cylindrically symmetric transverse expansion of the system with different nuclear profile functions. Initial conditions obtained from a self-screened parton cascade calculation and, for comparison, from the HIJING model are used. Compared to an equilibrated plasma at the same initial energy density, taken from the self-screened parton cascade, a moderate suppression of the photon yield by a factor of one to five depending on the collision energy and the photon momentum is observed. The individual contributions to the photon production, however, are completely different in the both scenarios.Comment: 14 pages, 4 figures, shortened version to be published in Phys. Rev.

    Color conductivity and ladder summation in hot QCD

    Get PDF
    The color conductivity is computed at leading logarithmic order using a Kubo formula. We show how to sum an infinite series of planar ladder diagrams, assuming some approximations based on the dominance of soft scattering processes between hard particles in the plasma. The result agrees with the one obtained previously from a kinetical approach.Comment: 15 pages, 4 figures. Explanations enlarged, two figures and some refs added, typos corrected. Final version to be published in Phys.Rev.

    Out of equilibrium quantum field dynamics of an initial thermal state after a change in the external field

    Full text link
    The effects of the initial temperature in the out of equilibrium quantum field dynamics in the presence of an homogeneous external field are investigated. We consider an initial thermal state of temperature T for a constant external field J. A subsequent sign flip of the external field, J to -J, gives rise to an out of equilibrium nonperturbative quantum field dynamics. The dynamics is studied here for the symmetry broken lambda(Phi^2)^2 scalar N component field theory in the large N limit. We find a dynamical effective potential for the expectation value that helps to understand the dynamics. The dynamics presents two regimes defined by the presence or absence of a temporal trapping close to the metastable equilibrium position of the potential. The two regimes are separated by a critical value of the external field that depends on the initial temperature. The temporal trapping is shorter for larger initial temperatures or larger external fields. Parametric resonances and spinodal instabilities amplify the quantum fluctuations in the field components transverse to the external field. When there is a temporal trapping this is the main mechanism that allows the system to escape from the metastable state for large N. Subsequently backreaction stops the growth of the quantum fluctuations and the system enters a quasiperiodic regime.Comment: LaTeX, 19 pages, 12 .eps figures, improved version to appear in Phys Rev
    • …
    corecore